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Abstr8d-The subject of this paper is the efficient and accurate determination of design sensitivity
coefficients (DSCs) in an elastic solid with zones and corners. Direct differentiation of the relevant
derivative boundary element method (DBEM) formulation of the problem is carried out here.
Corners and zones in a body are treated carefully with conforming elements. A numerical implemen
tation of the method is carried out with isoparametric quadratic boundary elements. The power of
this approach is demonstratt:d through several numerical e'lamples. It is shown that the DSCs of
the various mechanical quantities of interest are obtained accurately and etlicicntly. In onc e'lample.
even the DSC of the stress at a corner. with respt.'Ct to the corner angle. is obtained "cry ill.:curately
by this mcthod.

I. INTRODUCTION

Shape optimal design is un important topic in the structural design research area. Typically.
the optimal shape of a 2-D or 3-D structural component is determined to minimize an
objective function. subject to some constraints involving mechanical quantities such as
displacements. tractions or stresses.

In almost all shape optimization processes. design sensitivity coellicients (DSCs). which
arc the rates of mechanical quantities with respect to a design variable. are essential for the
determination of the optimum shape of the bodies. The design variable being considered
here is a shape parameter that controls the shape of part or whole of the boundary of a
body. The DSCs arc then used as a guide to the best directions in nonlinear programming
algorithms which typically iterate on the shape of the object along these directions until an
optimal shape is obtained. Accurate and efficient determination of DSCs leads to a smaller
number of iterations. thus leading to emcient design.

The subject of this paper is the accurate and emcient determination ofdesign sensitivity
coefficient (DSCs) for 2-D linear dasticity problems by the boundary element method
(BEM). The bodies can have corners on their boundaries and can be divided into multiple
zones.

The approach being used here is the direct analytical differentiation (DDA) of the
governing boundary element method formulation of the problem. The exact differentiation
eliminates errors that might occur from finite difference methods and leads to closed form
integral equations for the desired sensitivities. These equations arc then solved by numerical
discretization. This approach is very accurate and efficient.

There are some papers in the literature that determine DSCs by DDA of the BEM
formulation of a problem. B.lrone and Yang (1988) have used this approach for 2-D
linear elasticity and have solved a simple example of an ellipse without corners. Rice and
Mukherjee (1990) have solved DSCs for axisymmetric elasticity while Kane and Saigal
(1988). Zhang and Mukherjee (1990). Saigal er al. (1989). Aithal er al. (1990) have solved
planar. axisymmetric and some 3-D problems. respsectivcly. In Kane and Saigal (1988).
Saigal er al. (1989) and Aithal er al. (1990). the authors first discretize the OEM equations
and then differentiate them analytically with respect to shape variables. while in Barone
and Yang (1988). Rice and Mukherjee (1990) and Zhang and Mukherjee (1989). the
authors follow the opposite approach. It seems more appealing. intuitively. to start with
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differentiation of the relevant BEM equations and follow this by discretization. The two
approaches do, as expected, eventually lead to the same equations.

Two difficult problems in this area of research are the accurate determination of
sensitivities of boundary stresses and the determination ofdisplacements, tractions, stresses
and their sensitivities at corners on the boundary of a body. The finite element method
(FEM) has problems with the determination of accurate boundary stresses while the
approach of Barone and Yang (1988) requires the integration of strongly singular kernels
in order to obtain these quantities. The problem ofDSCs for stresses, at a point on a corner
of the boundary of a body. has not been solved in an elegant manner before this work.

Ghosh et al. (1986. 1987). in two recent papers. have presented a BEM formulation
in which the tractions and displacement derivatives are primary boundary variables. This
formulation only has logarithmically singular kernels for 2-D problems. The boundary
stresses can be obtained from the boundary values of tractions and displacement derivatives
by purely algebraic calculations. While the original work (Ghosh et al.. 1986) used non
conforming elements at corners. the present work uses conforming elements. so that a
source point can be placed directly at a corner.

The present work. which is based on DDA of the derivative BEM formulation (Ghosh
et al.. 1986). makes two important contributions to the literature in this field. The first is
the elegant .tnd accurate determination of stress sensitivities at a regular point on the
boundary ofa body. The BEM formulation (Ghosh et al.• 1986) is analytically differentiated
with respect to a shape parameter to yield an integral equation for the sensitivities of
tractions and tangential derivatives of displacements on the boundary of a body. The new
differentiated kernels arc completely regular for 2-D problems! Then the boundary stress
sensitivities arc obtained directly as linear combinations of the sensitivities of tractions and
tangential derivatives of displacements. The accuracy of stress sensitivities at a boundary
point. therefore. is of the same order as that of the sensitivities of tractions and displacement
derivatives.

The second important contribution is in the treatment of corners and zones. Con
forming elements arc used at corners in the present work. A source point is placed directly
at a corner and the number of field quantities (tractions and displacement derivatives) is
doubled at a corner since the components of these quantities arc not necessarily continuous
across it. Therefore. BEM equations cannot give enough information for solving the
mechanical quantities. Extra equations at a corner come from the stress relations. In some
special cases (for instance. a right angled corner), stress components are continuous at
corners. This is not true in general. Stress discontinuities can occur at corners if the angle
is not 90 degrees. even though the stress components arc bounded there. These two different
situations are carefully treated in this paper.

The above ideas have been implemented in a computer program for the determination
of DSCs for planar elasticity problems. Numerical results are presented in this paper for
DSCs for planar bodies without and with corners. A very interesting example is the
determination of the sensitivity of stresses, at the tip of a wedge. with respect to the wedge
angle. The numerical results reported here arc generally very accurate.

2. A DBEM FORMULATION FOR PLANAR ELASTICITY

Ghosh et al. have recently proposed a derivative boundary element method (DBEM)
formulation for linear elasticity in which the tractions and tangential derivatives of dis
placements (Ghosh et al.. 1986. for 2-D problems) or tractions and displacement gradients
(Ghosh and Mukherjee. 1987. for 3-D problems) arc the primary variables on the boundary
of a body. An analogous formulation has also been presented by Okada et al. (1988).

The BEM equations for two-dimensional linear elasticity for a simply connected region
B can be written as (Ghosh et al.. 1986):

fo [V;J(P, Q)!,(Q)- W;J(P, Q)A,(Q)] ds(Q) = 0

where Vij is available in many references (e.g. Mukherjee. 1982) and. for plane strain

(I)
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In this equation for W,/, the source and field points are P and Q (with capital letters denoting
points on the boundary cB and lower case letters denoting points inside B). r is the
Euclidean distance between P and Q and r/J is the angle between the vector reP, Q) and a
reference direction. Also. t, and &, are the components of the traction and tangential
derivative of the displacement «('u,/2s = &,). respectively. with s the curvilinear coordinate
measured along the boundary cBofthe planar body. Finally.e'l = e~~ = O. e,~ = -e~1 = I.
\. is Poisson's ratio and J,) is the Kronecker delta. A comma following r denotes a derivative
with respect to a field point coordinate. It is very important to note that W,} has only a
logarithmic singularity (same as V,) as r goes to zero. A constraint equation

r &i ds = u,(2)-u,(I)
Ji~BI

(where cB I is a suitable part of cB with 11,( I) and 11,(2) the values of u, at the beginning and
end of cB ,) must be included for certain problems.

As can be seen from eqn (I). the traction and tangential displacement derivative vectors
are the primary unknowns on oB in this formulation. It has been shown that the stress
components at a regular point on 2B. for plane strain. can be written in terms of the
components of t and & as (Sladek and Sladek. 1986; Cruse and Vanburen. 1971):

(2)

where

with (' I = \'/( I - v). ('~ = 2G/( I - v) and G the shear modulus of the material. Also. ni and
1, are the components of the unit (outward) normal and (counter-clockwise) tangential
vcctors .It a point on DB. Thus. if t and & are primitive variablcs on DB in a BEM
formulation, thcn these quantities. as well as (T/I' can be obtained on cB with very high
accuracy.

The corrcsponding DBEM cquation for thc sensitivities are obtained by differentiating
cqn (I) with respect to a shape design variable b (sec Zhang and Mukherjee. 1989):

Js lV/I(b. P. Q )r,(b. Q) - W'I(b. p. Q)A,(b. Q») ds(b. Q)

+1 lV'I(b. P. Q)t,(b. Q) - Jv'I(b. P. Q)&,(b. Q)l ds(b. Q)
,'s

+Is lVi,(b. P. Q)t,(b, Q)- W'/(b. p. Q)&,(b. Q» d.5(b, Q) = 0 (3)

where a superscript • denotes a derivative with respect to a typical component of b. It has
been shown (Barone and Yang. 1988) that

(4)

where. by virtue of the fact that
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V,) is completely regular! A similar argument is used to show that a,,) is also regular. Finally
(Barone and Yang. 1988).

(5)

A more convenient formula for dJ is given in Appendix A. A very interesting feature of
eqn (3) is that its first line is identical to eqn (I) with the sensitivities replacing the tractions
and displacement derivatives. Analogous to the usual BEM problem. halfof the sensitivities
on cB must be prescribed and the rest can then be determined from eqn (3). Thus. the
sensitivity problem has the same coefficient matrices as the original BEM problem with a
known right hand side (since t and 11 on cB are known at this stage). This known right hand
side involves the evaluation of regular integrals which is very easy to perform accurately.

The equation for the sensitivity of stress at a regular point on eB is obtained by
differentiating eqn (2) with respect to the design variable b:

.. .
(,'1 = A,/.r. +B,/k l1. +Aijkt"k +Bi)kAk' (6)

The above equation expresses ~il as a linear combination of t i • A, and their sensitivities... ...'"Hence. one expects tT'i to be obtamed as accurately as t i and A"

.l. CORNERS AND ZONES

3.1. Comas
The real solid body may include some corners across each of which there is a jump in

the unit vectors nand t which 'Ire normal und tungential to the bound<lry NJ. Consequently,
discontinuities in both the tructions and tangential derivatives of displ..\cements wilt occur
at a corner. Thcrefore. eight quantities are of intcrest ..tt n corner in the 2-D elasticity
problem. only four of which are prescribed from the boundury conditions. 11' ..\ source point
P is ph\ced exactly nt a corner (conforming boundary clements) one obtains two BEM
equntions <It P. but two more independent equ<ltions are still necessary. Fortunately. this
information can be obt.tined by considering the behavior of stress components at a corner
point.

3.1.1. General comers: stress components are discomimwus ot a corner. A corner point
on the boundary of the body can be viewed locally as the tip of a wedge. as indicated in
Fig. I. The wedge problem is a classical elasticity problem and has been investigated by many
researchers for many years (Timoshcnko and Goodier. 1970). The situation considered here
is that the stress components are bounded at the tip as well as throughout the whole wedge.
and that only distributed loads arc applied on the wedge faces. Also. the assumption of

...

Fig. t. The elasticity problem in a wedge.
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uniform local boundary loads on the two faces of the wedge is made because each corner
region is assumed to be small enough compared to the whole body.

A general stress function in polar coordinates, for planar elasticity problems, is avail
able (Timoshenko and Goodier, 1970). The function chosen here is of the form

q,(r,8) = r~[A+B8+Ccos(20)+Dsin(20)J (7)

because this function has four unknown constants, gives bounded stresses in the wedge and
contains the only terms from the general solution that give constant tractions on the wedge
faces. The corresponding stress components in polar coordinates are:

(8)

Clearly. four coefficients A, 8, C and D in the stress function have to be determined to
satisfy the four boundary tractions which represent the local traction information around
the corner.

Substituting the boundary conditions (Fig. I)

(9)

into eqn (7), onc can obt~lin A, 8. C and D easily (sec Appendix 8).
After lengthy algebra and usc of the symbolic computer program MACSYMA. a

rather simple solution is obtained for the stress jumps at the tip of the wedge. Writing, for
simplicity. the stress jumps for the special case (1 = O. one c.m show that

where

Aatl = [iX+sincrcoscXl/(r,iX)

Aau = [a-sin cr cos a]/(r. iX)

Aau = sin 2 a/(t,iX} (10)

Here a II. a 1~ and au are components in the global Cartesian axes.
By observing eqn (10), it is obvious that the stress components are not. in general.

continuous at the tip. even though they are bounded there. This is because there exists the
term 8r l O in the stress function and the coefficient 8 does not. in general. vanish. The
special cases when the stress components have no jump at the tip will be discussed later in
this paper.

It is easiest to understand the singular behavior of the displacement derivatives by
considering the special case with only 8:1:: 0 in eqn (7). Now, once again, a general
orientation of the corner ({1 :I:: 0) is being considered. For this case, from eqn (8), the stress
components in polar coordinates have the following form :

a, = 280, an = 280. a,n = - 8.

Substituting the above stresses into the constitutive relations for plane strain elasticity.
one can obtain the Cartesian displacement components in terms of polar coordinate vari
ables as the following:
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u. = 2prOcosO+4qrlnrsinO-krsinO+E

u~ = 2prOsinO-4qrlnrcosO+krcosO+F (11)

where p = B(1-2v): 2G. q = 2B( I - v) and E. F and k are integration constants. Here, E
and F represent rigid body translations while k represents the rigid body rotation.

Evaluating eqn (II) along the boundary of the wedge and taking derivatives with
respect to the curvilinear coordinate s. one can easily get the tangential displacement
derivatives A I and A~ as:

at () = P. AI = 2ppcosp+4qlnrsinp+4qsinp-krsinp

A2 = 2ppsinp-4qlnrcosp-4qcosp+krcosp

at () =:t. AI = -2plcos~-4qlnrsin:t-4qsinl+krsinl

A2 = -2plsinl+4qlnrcosl+4qcos~-krcosl (12)

Note that A I and A~ have In r singularities at the tip of the wedge. This is directly induced
by the Br~O term. Therefore. the BrzO term in the stress function causes not only the
discontinuity in stresses but also the singularity in displacement derivatives.

Further analysis of eqn (2) reveals th<lt the boundary stress components only involve
the tangential component of A. Since. by assumption. (1 is bounded at a corner. so are A.•
on either side of it. It c<ln be shown from eqn (12) that An- and An+ , associated with rigid
body rotation. become singular in this c<lse.

A OEM implement<ltion of the general corner is described next. Suppose, for clarity.
th<lt the tractions arc prescribed on either side of a general corner. Mixed boundary
conditions can be taken care of by <I modification of the following.

The first step is to obtain u generul solution for AI and A z, on either side ofa corner.
in terms of the prescribed tructions <lnd the (unknown) rigid body rotation k. For this,
Appendix B would be useful. The result is the expressions (12). corresponding to B
(assuming 8 oF 0), as well as other bounded terms from A, C and Dol' eqn (7). If. in a
given eX<lmple, 8 happens to vanish. then one has a special corner. with continuous stress
and bounded A. This is discussed in the next section. Otherwise. the existence of the In r
singularity in A I and Az, on either side of u general corner, requires special attention in a
BEM impkmcnt<ltion. Now a special pair of (small. straight) segments iJB, (Fig. 2) are
placed next to a corner point and a source point P is placed at the corner 0 as usual.
Solution (12), which originates from the Br 20 term in eqn (7). is valid locally if the segments
arc small. The other terms in c/J(r. 0) from eqn (7) give bounded A and must also be included
in general.

The DOEM eqn (I) is separuted into two parts. one over DB, and the other over the
remainder 28 - D8, :

aD ·aD•

aD •
Fig. 2. Special segments on the boundary.
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is-,.s. [UiJ(P. Q)t,(Q) - W,j(P' Q).1,(Q)] ds

+is. [Ujj(P.Q)t,(Q)- Wjj (P.Q).1,(Q)]ds = O. (13)

The eltpressions in eqn (12) (together with other terms from A. C and D) are integrated
eltactly. even for the worst case when the source point is at the corner itself and one term
in W'j.1, has the form (In r)~. The local rotation k. at the corner. is unknown in eqn (12),
but can be solved once the global BEM equations. over the entire cB. are assembled. In
effect, the quantity k assures the compatibility of the local solution at a corner and the
global solution of a problem.

The sensitivity equations at a general comer must be obtained neltt)f tractions are
prescribed at a general corner, their sensitivities vanish. The sensitivities .11. 412on either
side of the corner, are obtained by differentiating the appropriate £ltpressions for A with
respect to the design variables. This leads to an unknown quantity k which is solved from
the differentiated form of eqn (13). In this way. the sensitivities on the boundary oB. of a
body with general corners. can be obtained.

3.1.2. Special corners: stress components are continuous at special corners. Looking at
the entire problem from a mathematical as well as a physical point of view. it is seen that
the following simple situations lead to continuity of stresses (and bounded A) at corners.
Other situations with continuous (I are also possible.

A right angled corner with arbitrary applied tractions.
An acute angled unloaded corner (t: = t n- = t,+ = r.- = 0) where (1'1 = 0 (Williams.
1952).
A corner which arises from using symmetry or zoning in a problem where the point
was originally regul.tr or a SPCChl1 corner.

Once the stresses are continuous around a corner. the following equations hold from
eqn (2):

(14)

The above gives three equations. of which at least two are linearly independent.
Therefore. the BEM eqns (I) plus eqns (14) give enough equations for solving the boundary
unknowns. including four from each corner.

This global system is overdetermined since elttra equations arise from the stress
relations (14). The system, however, has fuJI column rank, is consistent and the number of
linearly independent equations equals the number ofunknowns. Regular QR decomposition
is used to solve this system.

The corresponding sensitivity equations arc obtained by differentiating eqn (14) with
respect to the design variable h. The eltpression is the following:

These corner sensitivity equations, together with eqn (3), can be used to solve for the
unprescribed boundary sensitivities in a body with special corners.

3.2. Zones
Multiple zones have been treated in a BEM program by several authors (e.g. Liggett

and Liu. 1983). Here a consistent approach is presented for the treatment of zones and
corners in a DBEM program.

SAS 27:8-0



990 Q. ZHANG and S. Mt:KHERJEE

A

Fig. 3. Zones.

A 2-D situation is shown in Fig. 3 with three zones. A three-zone problem is considered
here for simplicity, with the total body having a smooth boundary. The material in each zone
is considered to be homogeneous, isotropic and linearly elastic. but the elastic properties can
vary from one zone to another. The idea of modeling the three-zone problem, which is easy
to extend to a body with an arbitrary number of zones, is outlined below. This algorithm
works fine if the stresses are bounded throughout the composite body. This is expected in
a body with unifonn material properties. which is zoned for improving the efficiency and
accuracy of OEM modeling (Rudolphi. 1983). The general problem with different materials
often has stress singularities at points where the zones meet (Liggett and Liu. 1983).

The basic idea is to trent the body as three separate bodies. Each body (zone) has an
external boundary, an intern~11 boundary and three corner points (stresses are continuous
at these points because they arc generated. by the zoning process. from a body with a
smooth boundary). Let the boundaries of the three bodies be discretized. Interboundary
compatibility at the interface nodes must be satisfied. Conforming elements arc used at
each corner.

Assume there arc Nil "'flular exterior points for each body (i = 1,2.3 for this example)
and Nil rcgulur interface p'oints between zones (i.e. Nil regular exterior points for zone I
and N 12 regular interface points between zones I and 2. etc.). A regular point is one such
that the boundary of zone i. on which it lies. is locally smooth there.

There arc four kinds of equations or relations to be considered.
3.2.1. The REM equations. OEM equations are used in each zone and there are two

equations for each point (regular or corner point). For example. there are 2(N 11 +
N 12 +N I) +6 OEM equations for body I. The total number of equations is

) )

2 L L N iJ +18.
i- I J- I

(16)

3.2.2. The external boundary conditions. Two quantities are specified at each regular
external point. These quantities can, in general,jump at a corner point. Thus, two quantities
are specified on each side of the corner points. The total number of external boundary
conditions is:

) )

22: Le5/N,,+12
,- 1 j- I

(17)

where e5,J is the Kronecker delta.
3.2.3. The illterface conditions. At each interface point (say between A j" and A r), one

has the equations (i. j = I, 2, 3, i :1= j) :

All) = _A\il, AI;) = -A'.jl.

rll) = -rV', r~) = -rYI
.

The total number of interface equations is
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J J

2 L L (l-c)'j)N,j+24.
,- Ij-I

991

(18)

3.2.4. The corner equations. Comer equations have been discussed in detail in Section
3.1 of this paper. There are nine comers in this example and three equations for each comer
[see eqns (14) and (15)]. A corner equation is applied between points in one zone, say
between A I" and At. Therefore. the total number of equations is 27.

Adding the terms in Sections 3.2.1-3.2.4 together. one obtains the total number of
equations as:

J J

4 L L Nij+81.
i-lj_1

Since there are four primary quantities for each regular point and eight primary quantities
for each comer point. the total number of unknowns is:

J J

4 L L Nij +72.
i-I j-I

The system is overdetermined because of the stress continuity equations at corners.
However. the equations are consistent and sufficient and can be solved to get a unique
solution.

4. NUMERICAL IMPLEMENTATION

4.1. Di.f('f('ti=clticJn of eqtwtiofls-I : Strt'S.f('.f are CofltimlOU.f (It comers of the body
The REM equ..ttions (I) (for tractions .md tangential displacement dcrivatives) and

(3) (for thcir scnsitivitics) are diserctizcd in thc usual way. The boundary ,JB is subdivided
into piecewise quadratic, conforming boundary c1emcnts. The variables t i and t:.i are
assumed to be piccewise quadratic on these boundary clements. The logarithmically singular
kernels arc integrated by using log-weighted Gaussian integration. When special corners
exist. the corner equations are added to the usual REM equations. and all the equations
arc assembled together. The resulting systems are of the form

[A]{t} + [B]{t:.} :: to}

[A]{i} + [B]{A} = {h}

(19)

(20)

and after switching appropriate columns one obtains. for the unknowns {x} and {1} on
the boundary

[K]{x} = {rl} (21)

(22)

Two points deserve mention here. First. eqns (21) and (22) have the same stiffness matrix
[K]. The vector h} contains the contributions from the second and third lines of eqn (3).
Second. eqns (21) and (22) are overdetermined but have full column rank. They have been
solved by QR decomposition in the numerical examples that follow (Golub and Van Loan.
1989).

4.2. Discreli=alion of equations-II: stresses are discontinuous al corners of the body
The modified REM equations (13) are discretized in the usual way onr}' on the boundary

eB-oB,. A pair of special segments aB. is placed near each corner where the stresses are
discontinuous. The analytical solutions for t:.i • discussed earlier, are assumed to be valid in
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the segments if they are small enough. The first integral in (13) yields coefficient matrices
for the nodal unknowns on the boundary cB-cBJ • The second integral in (13) yields the
coefficient matrix for k and a known column from integrations of known functions such as
the first three terms of each of (12). The singular function In~ r is integrated analytically.
The resulting systems are of the form

[A]{t}+[B]{~}+{P}k+{f.} = 0 (23)

and after switching appropriate columns one obtains. for the unknowns {x} including
~. t. and k

[K]{x} = {ql}' (24)

If there are some special corners on the boundary, the corner equations for them are added
to the above equations and the assembled system still has the same form. The system. then.
becomes overdetermined and is solved by QR decomposition.

The corresponding sensitivity equations are obtained in analogous fashion. This system
has the form

(25)

4.3. Numerical results
All the numerical results discussed below are for plane strain with Poisson's ratio

v = 0.3. The mechanical quantities t. ~ and (1 and their sensitivities are determined for each
problem. The first two examples include special corners. A general corner is studied in the
third problem. The last problem has two zones.

Example I. A wedge ofangle Of subjected to tractions is shown in Fig. 4. These tractions
are obtained from the stress function

cP(r, 0) = Ar2 sin 20

with A = - 1/2 sin 2Of. In this special problem. the stress tensor (1 is continuous at the tip
of the wedge 0 (note that here the tractions are functions of ~). The wedge angle Of is the
design variable in this problem. The analytical solution of this problem is

(111 = (122 = 0, (112 = l/sin21X

so that

o

I
'tl=~

't=_--l.....
2 2 cos a

~

~ I =0.

sin 9
't. = Sin2ii

cos 9
f 2 = '"5ln2'Ci

Fig. 4. Example I : special comer problem.
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Table 1. Stress components and their sensitivities at the tip of the wedge (example I)

Ojl CTZZ Ojz

Aftal,t1cal 'Ii 0.00000oo 0.00000oo 1.15..1005

Nunoetlcal'll -0.2115911£-5 0.IS155OOE-6 1.154691S

..
I I 0.00025Error

A,"",'icQI '-ii 0.00000oo 0.00000oo -1.3333333

Nunoetical '-il 0.2....882IE-.. 0.1550109E-4 -1.3333032

.. I I 0.0030Error

993

• 0(/ n 2cos 21%
(/12 =~ = - sin 2 2IX'

This example provides an opportunity to test the present method for the determination of
the stress at the tip of a wedge and its sensitivity with respect to the wedge angle. In this
cxample (Appendix A).

on thc curved surface and d1 =0 on the straight faccs which undergo rigid body rotation.
The numerical results for the stress components and their sensitivities at 0 are given

in Tablc t. It is quite remarkable that the numerical result for ~ 12 captures five significant
digits of the analytical solution with only three quadratic boundary elements used to model
the boundary oR!

Example 2. The classical problem of a body with an elliptical hole is considered in this
example. Only a quarter of the ellipse needs to be modeled because of symmetry (Fig. 5).
Here. a = 2. b = I. L = 30, (/ Xl = 1.0. The corners here arise due to the use of symmetry
of the problem. Hence they are special corners where the stresses are continuous. The semi
major axis a is the design variable in this problem. The analytical solution for the tangential

t t t t t t
0_----------, C

E
b~

a A B

114.--- L--~~
Fig. S. Example 2: a body with an elliptical hole.
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"skin" stress and its sensitivity on the ellipse (for an elliptical hole in an infinite plate) are
(Barone and Yang. 1988):

I+2m-m~+2cos2¢
(I, = (I x: I+m~ +2mcos2¢

Gil = -(I .... (I-m)(1 +m2 +2mcos2¢)-(m+cos2¢)(! +2m-m2 +2cos2¢) ( 2b ,)
(l +m2+2mcos2¢)- (a+b)-

where ¢ is the eccentric angle and m = (b-a)/(a+b).
The comparisons of analytical and numerical results for (11/ and ~II are shown in Fig.

6a and b respectively. A total of 54 quadratic elements (20 elements are spaced at equal

J..

..•

1.'

l'

u

...

"---- analytical result
'---- numerical result

• (rad.)

Fig. 6a. Angular v:l!iation of (1. around the quarter ellipse.

U

10

analytical resull
u numerical result

1.0

'0•

.s

,(rad.)

Fig. 6b. Angular variation of U. around the quarter ellipse.
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X 2

.1 t"'2pcose-2pesine

.1 2-2psin9+ 2p9COS9

1- 2 u
(p"'---ro- )

X IAo
f

l
",l. t 2 =O

Fig. 7. Example 3: general corner problem.

increments of the eccentric angle on the quarter ellipse. 12 elements applied on AB. 14 on
DE. four on BC and four on CD. respectively) are used for these numerical results. The
density of elements on AB and ED is nonuniform. with small elements being placed near
the points A and E. respectively. Problems involving stress concentrations are typically
sensitive to the mesh around the stress concentration points. The mesh used here is the
result of a limited convergence study and previous experience with such problems.

The results from the present method are seen to be very accurate over the entire region.
In these figures. the numerical solutions. except for some very small oscillations. essentially
agree with the analytical solutions within plotting accuracy. It is remarkable that the
computed sensitivity of the stress concentration factor at A is 2.03 and the relative error is
1.54% compared to the analytical result of 2.0.

Example 3. The effect of corners where the stresses are discontinuous is studied by
considering the problem of a wedge of angle IX subjected to the tractions shown in Fig. 7.
This solution is obtained from the stress function

with B = I. In this problem. the stress tcnsor (1 is discontinuous at the tip of thc wedgc O.
The design variable is still the angle IX. The strategy discussed in Sections 3.1.1 ao<!. 4.2 is
~sed here with iJB. = COD. A comparison of analytical and numerical results for t1( and
d l on the boundary CB are shown in Fig. 8a and b. respectively. A total of six quadratic

•.1

...
,7

... analytical result
numerical result

.,
.<1
0 .,.

r
•Fig. 8a. Variation ofG.1, along CD.
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analytical result
o numerical result

r

•Fig. 8b. Variation of GA 2 along CD.

clements are used over an-cB,. two for each edge. All the numerical results lie close to
the curves. The results arc 'Iccurate. For more general problems. the special segments aB,
and the REM elements ncar the transition points C and D must be chosen properly.

Example 4. The final problem considered in this p'lpcr is the determination of mechan
ical quantities and their sensitivities in the region are shown in Fig. 9. Two zones. with
uniform material properties. are included in this problem. The applied boundary conditions
in this problem arc the same as those in example I (Fig. 4) and the amtlytic.tl solution for
this problem is the same as that from example I. Numerical results for the stress components
and their sensitivities .tt () arc shown in Table 2. These arc as accurate as those in Table I
for example I.

S. CONCLUDING REMARKS

The power of the DDA of the relevant DBEM equations. for the determination of the
DSCs ofan elastic problem. has been demonstrated in this paper. This approach. which uses
tractions. tangential displacement derivatives. and their sensitivities as primary boundary
variables. is a natural for the accurate determination of stress sensitivities on the boundary
of a body. Boundary stress sensitivities. which are typically not easy to obtain accurately
by numerical methods. have been obtained very accurately here. at regular as well as at
corner points on the boundary of a body.

X 2

;It I

Fig. 9. Example 4: lones.
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Table 2. Stress components and their sensitivities at the tip of the wedge (example 4)

0 0 0
II 22 12

Analytil:al 0 ij 0oooooס.0 0oooooס.0 1.1547005

Numerical 0 ij -O.2432946E-5 -0.1914389E-5 t.t546984

Error(~) I I 0.00025

Analytical 0 ij 0oooooס.0 0oooooס.0 -1.3333333

. o·
0.4803036E-5 0.6862585E-5 -1.3333177Numcrical iJ

Error (~) I I 0.0012

The chosen numerical examples have analytical solutions available and serve as bench
mark problems for testing the accuracy of the numerical algorithm. Ofcourse. the computer
program that has been generated here can be applied to carry out general sensitivity analysis
of 2-D elastic problems.

Extensions of this work could be carried out to calculate DSCs of 3-D clastic problems
(following the DB EM formulation of Ghosh and Mukherjee. 1987) as well as nonlinear
problems with both material as well as geometrical nonlinearities. Some of the nmthematical
formulations for nonlinear problems have already been completed (Mukherjee and
Chandnt. 19X9, 1990) and numerical implementations arc under way.

Ackn"II''''I~''I''JIl'flts This rese.. reh w..s suppllrted hy gr;1l11 numhcr MSM-K609391 (If the N.. tion..1 Sciem:e
Found..tion til CornelllJniversity. The eontrihution of Professur Vi-Chao Chen ofT&AM .. I Cornell. in deriving
the formul.. given in Appendix A. is gr.. tefully acknllwledged. All computing fur this rese.. reh w..s perform..of.1 .. t
the ("llrnell N..lilln..1SupereUlllpuler .....eility.
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APPENDIX A

Consider the parametric equations for a curve

x, -f,(It.,,)

·'fz .. fl(It.,,)

with 'Ie [c. d] where c. deR'''. Now. one has a smooth mapping (x R"'- R'l'. Here be R'·'. (x, . .'fl)eR,2) and
"is not a function ofb.

Now.

ds .. [(~:J+C~:2YJ 2d"

dS .. ~ [ ea:J+ea~YT 1 d"

for a typical component ofb.
Thus.

illiJX/
d.; ah iJ;;

as'" 1<'xl
1'"

(Chen. (9119).
As an example. consider the curved part of the boundary of the wedge in Fig. 4. let

where"e [0. I} and h .. !%. Now

l
oxi iJ /<,xl~ - R!%. a;, a;; - R

so that

APPENDIX 8

The eoelncients A. B. C and D of eqn (7) are the following (see Fig. II :

A .. (-(sin2y+2!%cos2y-2IJ)t:.-(2uin 27-cos2y+ I)t; +(sin 27-2/Jcos21'+2!%)f,-

+ (2P sin 2y + cos 2,' - I)f.-l/41

B .. [-(l-cos27)f: -(I-cos2y)t.- +sin2Y(f; -f.-Il/21

C .. (-(sin 2!%-sin 2/1+ 27 cos 2«)f," +(sin 2« -sin 2/1+ 27 cos 2P)f,- + (cos 2!%-cos 2{J)(f; -f'- »/41

D .. (eos2oc-cos2/l-2ysin2!%)f: -(cos 2!%-cos 2P-2y sin 2{J)f,- + (sin 21X-sin 2fJ)(f; -f;)Jj41

where

,'" P-IX
I" ysin2y+cos2y-1.


